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1. INTRODUCTION AND SUMMARY

Recently the author has described parts of a theory of homogeneous

turbxilence which is based upon a new kind of perturbation method. This method

leads to closed statistical equations for the velocity covariance upon making

a dynamical approximation which was termed the direct-interaction approxi-
1-5

mation.

In the present paper we shall first give a brief review of this

theory in which the basic equations will be interpreted dynamically, but not

derived. In contrast to the previous treatments, which were devoted primar-

ily to the stationary, isotropic case, we shall be concerned here with freely

decaying turbulence.

Apart from the presentation of the statistical equations of the

theory for the decaying isotropic case, the new content of the present paper

lies in the introduction of a special kind of dynamical model which is statis-

tically related to the actual turbulence system. This model has the property

that the equations of the direct-interaction approximation describe it exactly .

The existence of such a model leads to the conclusion that these equations

have certain important consistency properties. Also, it pjrovides insight into

the dynamical meaning and the limitations of the direct-interaction approxi-

mation.

2. THE STATISTICAL EQUATIONS OF MOTION

Let us consider an incompressible fluid in a state of isotropic

turbulence within a large domain of side L. If we analyze the velocity

field u (x,t) within the domain by a Fourier series expansion

u,(x^t) =Z u.(k,t) e^^'^ , (2.1)

where the simmiation is over all wave vectors allowed by the boundary condi-

tions, equations of motion for the Foiarier coefficients can be deduced from
k

the Navier-Stokes eqixation. In this way we find

^i. + vk^ju (k,t) = -ik P^.Ck) H u (k',t)u^(k" ,t), (2.2)
^t / ^ ^ ^-J k'+ k" = k "J °



where v is the kinematic viscosity and

The first term of P. .(k) serves to include the Reynolds stresses, and the

second term, the pressure. We shall regard the u. (k,t) as the fundamental

dynamic variables of the flow system.

In discussing turbulence we do not seek an exact description of

the exceedingly complicated velocity field but rather the average values

of physically interesting functions of the field. The averages can be

defined in several ways. We shall adopt here the most customary procedure,

in which the averages, to be denoted by <C ), are taken over a suitable

representative ensemble of individual flows. The statistical quantity of

greatest interest is the second-order covariance tensor (u (k,t)u. (k,t')).

It can be shown as a consequence of isotropy that this tensor must have

the form

(L/2rt)\u^(k,t)uj*(k,f)> = |p^^^U(k;t,f) , (2.k)

where the scalar U is real, does not depend on the direction of k, and is

a symmetric function of t and t' .^)^ The normalization by (L/2rt) is

done so that, in the limit L -> "O ^ when the spacing of the allowed

k vectors becomes infinitely close, the mean energy per unit mass is given

by

/-oo

I Z<u.(k,t)u.*(k,t)) -> / E(k,t)dk, (2.5)

-
where

E(k,t) = 2rtk^(k;t,t) (2.6)

is the energy spectrum function, as usually defined.**

Tf

In the following, we frequently shall write u. (k) instead of u,(k,t) when it
is not desired to specify a particular value o^ the time argument. The same
procediare will be followed with other time-dependent quantities also.

The particular normalization chosen is appropriate to cyclic boundary condi-

tions on the domain. Other usual boundary conditions require minor changes
in the definitions.
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We shall also define the function

2rtk^(k;t,t')
r(k;t,f) = TTTp— '

^^•'^^

vhich satisfies r(k;t,t) = 1 and measures the phase correlation betveen

the anrplitudes of a Fourier mode at times t and t*.

From (2.2) we may obtain the statistical equation of motion

(— + vk^]u(k;t,f) = S(k;t,f), (2.8)

vhere

S(k;t,f) = (L/2rt)\ H <u (k',t)u (k%t)u *(k,f)>. (2.9)

Because of the symmetry of U(k;t,t') in t and t', the similar equation

of motion involving au(k;t,t' )/9t ' is redimdant vith (2.8). For t = t',

ve find that (2.8) reduces to

/— + 2vk^)E(k,t) = T(k,t), (2.10)

I at J

vhere

T(k,t) = i^rtk^S(k;t,t) (2.11)

is the energy transfer function as usually defined. Equation (2.10)

expresses the conservation of energy. It exhibits the opposing contri-

butions of viscous dissipation 2vk'TE(k,t) and net energy-input from

interaction with other modes.

Equation (2.10), or (2.8), cannot be solved directly for

E(k,t), or U(k;t,t'), because of the presence of the third-order moments

on the right sides. Equations of motion for the third-order moments can

be obtained by multiplying (2.2) with suitable bilinear expressions and

averaging, but as a consequence of the nonlinearity these equations contain

fourth-order moments. One does not obtain a closed set of equations for

moments of any given orders simply by multiplying (2.2) with various

functions and averaging.
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Several theories of t\irbulence have been based on making (2.10)

determinate by assuming an expression for the triple moment T(k,t) in tenns

of E(k,t), obtained usueilly from some simple analogy for the energy-transfer

process together with dimensional considerations. The best-studied exanrple

is the eddy-viscosity theory of Eeisenberg. Other theories have been based

on the assimrption that fourth-order moments have the same expression in

terms of second-order moments as they would have if the velocity field were

normally distributed. In this way a closed set of equations can be obtained

which involve only the second- and third-order moments. Exaniples of this

type include the second theory of Eeisenberg and the theory of Proudman
7

and Reid.

The approach to be outlined in the present pai)er is not based on

direct siormlses about the relations of various moments. Instead, it in-

volves a well-defined approximation on the dynamical processes by which

statistical, interdependence of the Fourier modes is produced. The closed

equations thus obtained turn out to represent the exact behavior of a model

system whose dynamical structure is related to that of the actual system.

Thereby it can be inferred that the theory obeys important consistency con-

ditions. In formulating this approach it is necessary to consider not only

the moments describing the actxial statistical state of the system, such as

U(k;t,t') and S(k;t,t'), but also functions which give the average response

of the system to small perturbations. The latter functions embody essential

additional aspects of the dynamical behavior.

Let us suppose that at time t' the amplitude of mode k, but of

no other mode, is suddenly increased an arbitrary infinitesimal amount

5u.(k,t') by some impulsive force. The subsequent history of this pertvir-

bation in an5)litude - the infinitesimal, inipulse response - will be very

complicated, in general, because of the interaction of mode k with all the

other modes. However, if the response is averaged over the isotropic

statistical distribution of the unperturbed anrplltudes, we may expect it

to become a much simpler function. Therefore we introduce the average

impulse-response function g(k;t,t') defined for t > t' by

<6u^(k,t)> = 5u^(k,f)g(k;t,f)- (2.12)



Note that the averaging implied is only over the xinperturbed state, not

over the presciribed initial pertvtrbation 6u (k,t'). The response indicated

by (2.12) is proportional to the initial amplitude Junrp, despite the

nonlinearity of the system, becaxise ve are considering only infinitesimal

perturbations. In the following, ve shall usiially call g(k;t,t') simply

the response function. 4

By using (2.2), an equation of motion for g(k;t,t') analogous

to (2.8) may be obtained. As in (2.8), the right side of this equation

contains higher-order averages than the left, thereby giving irLse to oimi-

lar dlfficxilties. In the present case, the higher averages involve the

cross-response of other modes k' to the initial applied jump in the ampli-

tude of mode k; they axe connected with the contribution to the decay of

this ixanp due to spreading of its energy to the other modes. An addition-

al contribution arises, of course, from the viscous dissipation in mode k.

5. THE STRUCTORE OF THE HJIERACTION

The nonlinear interaction described by (2.2) is quite complex;

each mode interacts with every other mode. However, the total interaction

may be considered the resultant of very many elementary interactions of

simple structure, each of which involves just three Fourier modes. When

k = p + q, we shall define the elementsiry interaction of three modes k, p,

and q by the terms

-^Pm^ij^5^[^''/"S^"m^^^ -^ ^j(]5)y-a^] '

in the equations of motion of the form (2.2) for u.(k), u. (p), and tu(q)

respectively. We may represent this elementary interaction by the diagram

of Figure 1. It follows from the reality of the velocity field that

u.(-k) = u (k) . Therefore we shall consider the mode k to be represented

by the amplitude u (-k) as well as u, (k), and we shall include in the

definition of elementsiry interaction the conjugate terms to (j.l) which
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Figure 1. Diagram of the elementary

iiite3?action among modes Is., p, and q.
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appear in the equations of motion for u (-k), u (-p), and u (-q). It is

clear in general that elementary interactions exist only for mode triads

whose wave vectors can form a triangle .

The Reynolds stresses add pressure are conservative, so that the

nonlinear interaction serves only to distribute the energy among the modes

without overall gain or loss. The aptness of the concept of elementary

interactions is enhanced by the fact, verifiable from (2.2), that each

elementary interaction is individually conservative: the sum of the energy

transfers to modes k, p, and q arising from the terms in (3'1) is zero.

Thus the whole process of energy transport may be considered the sum of

elemental transfers associated with the individual interactions. The total

process is very complicated. Transfer from modes k and p to mode q may

take place not only through the elementary interaction which directly links

these modes (Figure l) but also through networks of elementary interactions,

involving intermediate modes, which can branch out to extreme complexity

(Figure 2). The branching is a graphical expression of the nonlinearity of

the equations of motion.

Fortunately, the complexity associated with the multiplicity of

transfer paths is coii5>ensated by a related featvure: each elementary inter-

action actually represents a very weak dynamical coupling among the modes

involved - provided the domain contsiining the turbulence Is very large. Let

us consider what happens as the limit L —> oo is approached. The number-

density in wave vector space of the modes allowed by the boundary conditions

increases as L . Consequently, the number of teims contributing to the

right side of (2.2) in any wave vector range increases as L . In the

limit, each individual term, representing a single elementary interaction,

makes only an infinitesimal contribution to the motion of the mode k. This

implies that in the limit the effective dynamical coiipling among any three

individual modes, k, p, and q due to the elementary interaction which

directly links them (Figure l) becomes infinitesimal in strength. The same

conclusion is suggested if one takes the terms in the first line of (j>.l),

which contribute to the motion of u^(k), and regard them aa glflng a coupling

between the pair of modes k and p with the amplitude u(q) acting as a

modulating factor. As L —> °<^
, the energy-per-unit-mass is spread over

an infinitely increasing number of indlviduaJ. modes. Thus the rms value

of the amplitude u(q) becomes infinitesimal, and so does the strength of

the pair coupling.
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It is not difficult to verify, by keeping account of the orders

-

of magnitude of relevant queintities as L -> oo , that the weakness of dyna-

mical coupling among any triad of modes is still valid when all the possible

paths of coupling involving many elementary interactions and intermediate

modes (Figure 2) are taken into account. In fact, the weakness of the total

coupling of any three modes is actually a dynnml ceil reqviirement for the

consistency of our underlying assumption of statistical homogeneity. As

L ^*- o<3 , homogeneity implies that the phase relations among individual
*

Fourier amplitudes become increasingly random, and this would not be

possible if strong dynamic couplings persisted among individual modes. It

is extremely important to keep in mind here that these weak couplings do not

become negligible as the limit is ai)proached. As they become weaker, there

become more of them because there are more allowed modes. Similarly, as the

statistical dependencies which they induce among individual modes become

weaker, there are more individual cross-moments to be added irp in the Fourier

sums which represent measurable averages. Indeed, the essential problem of

turbxilence theory may be considered the evaluation of these cross-moments.

h. THE DIRECT-INTERACTION APPRCKIMATION

Let us consider the case where at eui initial time t- the Fourier

amplitudes are all statistically independent and the state of the system

is specified by the initial spectiami E(k,t_). This represents a very con-

siderable idealization of any actusLL flow, as does om: previous assimption

of isotropy. However, this initial condition is an especially simple and

useful one for studying how the nonlinear interaction induces statistical

interdependence of the modes at later times.

We are particularly interested in finding the triple moment

<u^(p,t)ujq,t)u^*(k,f)> (^ = P"^5)' (^-1)

which contributes to S(k;t,t'). The most obvious way in which the nonlinear

- —_ .

See reference k, Section 2-5.
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interaction can induce a nonvanishing value for this moment is through the

elementary interaction which directly links the three modes involved (Figure l)

.

We would also expect the value of the moment to be affected by the more can-

plicated paths of dynamical coiipling involving networks of other elementary

interactions, and intermediate modes. The distinction just made suggests

breaking up the moment into the svaa of direct and indirect contributions

defined as follows

:

Let us remove from the equations of motion of the system the terms

(5.1) representing the single elementary interaction directly linking modes

k, p, and q; but let us leave unaltered slLL the other nonlinear terms, which

express the elementary interactions among the rest of the modes euid those

between k, p, q and the rest of the modes . We shall call the value of the

moment (4.1) induced by these altered equations of motion the indirect contri-

bution. The direct contribution will be defined as the difference between

the true value of the moment (with all elementary Interaction retained) and

the indirect contribution. Thus the direct contribution represents the part

of the moment which is induced by the direct elementary interaction acting

against tha background of all the other elementary interactions.

The approximation fundamental to the present theory is to neglect

the indirect contribution to the triple moment. We shall call this the

direct- interaction approximation. The dynamical picture underlying it is

the following. The elementary interaction directly linking modes k, p and q

induces an increment in the anrplitude of each of these three modes which

bears a phase relation to the product of the amplitudes of the other two

modes. Th\is it yields a contribution to the triple moment. However, this

interaction does not take place in isolation. Each of the three modes is

covrpled to the rest of the system. As a result of this coupling, the induced

increments do not siagjly continue to build up. A relajcation process takes

place whereby the energy of the increments is distributed, or mixed, by the

overeill interaction into many other modes- At the same time, an euidltional

relaxation is caused by the action of viscosity. Thus we have the pictvire

of phase relations among u(k), u(p), u(q) being continvially induced by the

direct coupling of the three modes and continually broken down by relaxation

effects associated with the dynamical Interaction as a whole.
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Now neglecting the indirect contirLbution to (^.1) amounts to

assijming that the effect of the overaU interaction - -without the direct

interaction - consists entirely of the relaxation process Just described.

Thus we are ignoring any induction of phase conrelation by networks of

elementary interactions which can couple modes k, p, and q only through

the agency of intermediate modes. Examples of such networks Eire shown in

Pigiire 3. It will be noticed that in the diagrams shown each intermediate

mode (represented by a line without a free end) is involved in two elemen-

tary interactions. This heus the effect of eliminating from the associated

contribution to i^-l) any dependence on the (random) phases of the aunpli-

tudes of the intermediate modes.

The only justification for the direct-interaction approximation

which we can cite at the present point is the wholly intuitive argianent

that in view of the complexity of the dynamical system the round-about paths

of interaction among three modes should be much less effective in inducing

definite mutual phase relations than the direct coupling. Later, we shall

see that the approximation satisfies inportant self- consistency properties

which strongly indicate its dynamic naturalness and that it actually repre-

sents the exact dynamics of a certain model system.

Approximations similar to that described for (^.l) can be defined

for moments of fourth and higher orders. We shall not deal with them in

the present paper.

It is not very difficult to obtain an exact analytical expression

for the direct contribution to C*-.!)- According to definition, this contri-

bution may be constructed by introducing the elementary interaction of

Figxire 1 as a perturbation on the equations of motion. Although this single

interaction is expected to induce the principal contirLbution to the triple

moment, it is clear from the discussion in the pr«vioviB Section that actually

it can represent only an infinitesimal perturbation of the motion of each

of the three modes involved, in the limit L —> c-o . Thus we can express

*
The diagrams in Figure 2 depict exaarples of more general networks in which
some intermediate modes enter only once. Because of the random phases of
the intermediate modes, it can be shown, without approximation, that such
networks give a vanishing contribution to (^.1) when they are summed over w^n

possible choices of intermediate modes in the limit L -^ oo ,

**
These two properties are consistent since the moment (^.l) represents in toto

only sua. infinitesimal phase correlation among the three modes when L -> oo
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its effects in terms of the response of the modes k, p, and q to eirbitrary

infinitesimal disturbances. Then we may average the result over the statis-

tical distribution, taking account of the weakness of the totpl dynamic

coupling and consequent statistical interdependence among the three modes

in the limit. After summing the results over p and q, we arrive at the

following exact expression '^ for the direct contribution to S(k;t,t'):

S(k;t,t') = rtkjl pqdpdqj/ a(k,p,q)g(k;tS6)U(p;t,s)U(q;t,s)ds

-J
b(k,p,q)g(pjt,s)U(k;t',s)U(q;t,s)d6 . (1^.2)

In this equation the summation over p and. q has been replaced in the limit

by an equivalent integration. The symbols k, p, and q denote wave numbers ,

and the integration is over the entire domain (denoted by A ) such that

k, p, end q can form the legs of a triangle. The quantities a(k,p, q) and

b(k,p,q) are geometrical factors which depend on the shai)e, but not the size,

of this triangle. They are given by

a(k,p,q) = |(1 - xyz - 2y^z^)

t(k,p,q) = (p/k)(xy + z5) (If. 5)

where x, y, and z are the cosines of the interior angles opposite the legs

k, p, q respectively. They obey the identities

a(k,p,q) >

a(k,p,q) = a(k,q,p)

k^(k,p,q) = P^(p,k,q)

b(k,p,q) + b(k,q,p) =2a(k,p,q) (h .k)

which, as we shall indicate a little later, express important dynamical

properties

.
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In order to facilitate the physical interpretation of (^.2), let

liS specialize to t' = t. Then ve find for the transfer function defined by

(2.11),

T(k,t) = kn\^jj pqdpdqf [a(k,p,q)g(k;t,s)U(p;t,s)u(q;t,s)

-b(k,p,q)g(p;t,s)U(k;t,s)U(q;t,s)]d6. (4.5)

The structiire exhibited by (4.5) may be rather directly interpreted. The

g functions on the right express the decay of infinitesimal perturbations

(here associated with the direct interaction) under the influence of viscos-

ity and the overall nonlinear coupling. Let us write each U factor in (4.5)

in the form

U(k;t,8) = (2nk^)"-^r(k;t,8)[E(k,t)E(k,s)]-'-'^.

(4.6)

Now the r functions express the loss of phase auto- correlation in the mode

aaiplitudes under the overall interaction. Thus the appearance of these

g and r functions embodies the dynamical relaxation effects discussed above.

It will be noted that the right side of (4-5) is the integral of

the difference between two terms. The term containing a(k,p,q) involves the

response function for the mode k. As this would suggest, it arises from the

induction by the direct interaction of an increment in u(k) having a phase

relation with the product of the amplitudes of modes p and q. Similarly,

the term containing b(k,p,q) involves g(p;t,s) and arises from the induction

of an increment in u^^) phased with the product of the amplitudes of modes

k and q. (Note that we may exchange the roles of p and q simply by a change

of integration variables.)

Since both the g and r functions express the relaxation effects

associated with the overall interaction, we may anticipate that they are

either non-negative or have only unimportant negative regions. Now from

the first of identities (4.4) we see that a(k,p,q) is non-negative, and the
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last of these relations suggests (conrectly, it turns out) that b(k,p,q) is

typically positive. Thus, the term in (^.5) containing a(k,p,q) plays the

role of an absorption term, which always represents a positive flow of energy

to mode k, while the term containing b(k,p, q) acts as an emission term.

Using (^.6) we find that the absorption term contains the factors

[E(p,t)E(p,s)] ^/^[E(q,t)E(q,8)]
^^^

*
but does not contain E(k) . In contrast, the emission term contains the

factors

[E(k,t)E(k,s)]^/2^E(p,t)E(p,s)]^/2

and thus is linearly proportional to E(k) . Consequently, the stronger the

excitation in mode k, the more the relative flow out of this mode into modes

p and q. Conversely, the stronger the excitation in modes p and q, the more

the relative flow frcsn them to mode k. It appears that the transfer func-

tion (^.5) describes a plausible tendency for the kinetic energy in the

various wave nianbers to seek some eqvillibrium through the agency of the non-

linear interaction.

By inserting (^.2) in (2.8) we obtain an equation of motion for

U(k;t,t') which involves only the functions g and U. In order to have a

complete system we need to obtain a similar equation of motion for g(k;t,t')

by a consistent extension of the direct-interaction approximation. This can

be done
'* without great difficulty, and the result is

f_i + vk^j g(k;t,f) =

-«k|| pqdpdqb(k,p,q)
I ^

g(p;t,s)g(k;s,f)U(q;t,s)ds (4.7)

It will be noticed that in contrast to (4.2) the right side here is bilinear

in the response functions and linear in the covariance scalars. It is possible

We use E(k) to denote the spectrum function when it is not desired to specify

the value of the time argvment.
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to give a simple dynamical interpretation of (^-7) whicti parallels closely

the actual derivation.

We can breaic up the relaxation process described by g(k;t,t') into

two parts, conceptually. First, an initial perturbation in mode k will

induce increments in the amplitudes of other modes p. For each mode p the

magnitude of this increment will be proportional to the amplitude of a third

mode q which acts as a modulating factor. Second, there will be a reaction

on mode k. The increment induced in the amplitude of mode p will in turn

induce a counter-increment in mode k, again proportional to the amplitude

of the third mode q. The counter- increment will on the average be out of

phase with the original perturbation in mode k^ sind thus represent a drain

of the perturbation energy out of mode k. This process is represented

diagramatically in Figure k . The arrows indicate the 'signal path' from

mode k to mode p and back to mode k.

Turning to (^.7) and writing out U(q;t,s) as an explicit covariance

according to (2.^), we may intejrpret the factors in the time-integral as

follows. If the amplitude of mode k is perturbed an infinitesimal amovmt at

time t' then g(k;s,t') represents the average fraction of this perturbation

which remains at time s. Together with the amplitude factor in U(q;t,8)

which has argimient s, it represents the perturbing force applied to mode p

at time s through the elementary interaction directly liiaking modes k, ^,

and q. This force integrated with the response function g(p;t,s) gives

the increment induced in mode p at time t. This increment, together with

the remadning amplitude factor in U(q;t,s) (argument t), represents the

perturbing force reacting at time t to produce a counter-increment in mode k.

The approximation made in obtaining (^+.7) is the neglect of

classes of longer paths of action and reaction on mode k which involve

successive transfers of excitation Eilong chains of modes instead of

individual transfers to single modes p. Typical neglected contributions

are shown in Figure 5. Here again, the arrows trace the 'signal path'

from mode k back to mode k. It should be noted that even in (^-7) the

interaction of modes k, p, and q with all the rest of the modes is

implicitly taken into account to the extent of the relaxation effects

included in the g and U functions on the right. As in ('+•2), we treat

the effects of the direct interaction not in isolation but against the

background of the rest of the interaction.
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Figpore h. Diagram for the direct-interaction

contribution to the response function g(k;t,t').
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FigTire 5. Exajnples of contributing processes

neglected in the direct-interaction approxima-

tion for g(k;t,t').
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If ve append to (2.8), (^-2), and (h.f) the boundary condition

g(k;t,t) = 1, (4.8)

vMch according to the definition of g(k;t,t') must hold for all t, we have

a complete set of equations which should determine the response and correla-

tion fionctions once the initial values E(k,t-) = 2jtk U(k;tQ,tQ) are prescribed.

5. REPRESENTATIOH Bi A MODEL SYSTEM

Before asking how accurate a picture of turbiolence the direct-inter-

action approximation represents, we have to inquire whether oxor approximate

integro-differential equations lead to any physically meaningful solution at

all. This is by no means am academic question. If an arbitrary approximate

expression is assimed for S(k;t,t') it is not to be expected that the solu-

tion of (2.8) will be the covariance scalar of a possible random process or

that it will go to zero in a physically sensible fashion as |t - t' |

—> °<5 .

Furthermore, an arbitrary approximation will not presei^re the conservation

properties of the interaction discussed in SectionJ. These observations

reflect the general fact that usviaJJLy we cannot make approximations within a

differential or integro-differential equation and obtain a solution which

displays the same asymptotic and integral properties as the solution of the

exact equation.

It can be seen in a rather simple fashion that the direct-inter-

action approximation does actually satisfy the consistency requirements we

have mentioned. This can be shown by demonstrating that (4.2) and (4.7) are

obeyed exactly by a model system in which the coiipling of the Fourier modes

is altered from that in the real system but the conservation properties of

the interaction are preserved. The ccairparison of this model system with

the actual system gives an insight into the real meaning and the domain of

validity of our airproximation.

Let us consider instead of (2.2) the more general equation

For exaaiple, U(k;t,t') might turn out to have a frequency spectrum which

is negative for scane frequencies, thereby implying a negative power spec-

trum for u.(k,t).
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of motion for u (k,t)

where the coefficient C(k,k',k") is real, symmetric in k, k' and k", and

invariant under replacement of any of these three vector argimients by its

negative. With this change, (2.8) requires that (2.9) be replaced by the

new definition

S(kjt,t') =

(L/2,^kj^ 1. C(k,k',k")<Uj(kSt)uJk",t)u^*(k,f)>. (5.2)

iC n~ iC — iC

It is clear from the symmetry properties of the C's that all the terms in

(5.1), representing the elementary interaction linking modes k, p, and q,

are miatiplied by the same factor C(k,p,q). Prom this it follows that the

individual conservation property of the elementary interaction is unaltered

by the generalization.

Our actual fluid system is represented, of course, by C(k,p,q) = 1

for all k, p, and q. Let us consider instead the new system obtained by

letting C(k,p,q) take the value +1 or -1 entirely at random (subject to the

symmetry conditions above) when k, p, and q range over the vEirious values

allowed by the boiindary conditions on our large volimie of side L. For this

system all the elementary Interactions have the same strength as in the

original system, but the relative sign of the coefficients of any two (or

more) elementary interactions is entirely random.

If one now goes through the direct-interaction approximation for

the new system, it is not hard to verify that as a result of the multipli-

cation of (5.1) by C(k,p,q) the expression (in the limit L ^^^ -=><>
) for the
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triple mcment (^-l) in terms of g and U functions is multiplied by this

same factor. Since [C(k,p,q)] = 1, it follows that S(k;t,t'), as defined

by (5-2), is still given by the expression (^.2). Consequently, the

equation of motion for U(k;t,t') is identical for the original and the new

systems in the direct-interaction approximation- Similarly, it can be

verified that the equation of motion for g(k;t,t') is given by (^.7) for

both new and old systems. (This can be inferred from the double appear-

emce of the direct elementary interaction in Figure k) Thus, the direct-

interaction approximation yields identical. g(k;t,t') and U(k;t,t*) for the

new system and the old.

Now let us consider the indirect contributions, neglected by our

approximation. Referring to Figures 5 and 5 we note that the indirect

contributions necessarily involve several distinct elementary interactions.

For the new system the coefficients associated with these interactions are

quite randomly related in sign. It is not very hard to see that when one

sums over all possible sets of participating interactions the consequence

is a random cancellation of the contributions from different sets. In the

limit L ^ ''O
, it can be shown that this results in complete suppression

of the indirect contributions to S(k;t,t') and the equation of motion for

g(k;t,t'). This means that for the new system, (2.8), (^.2), and (^.7)

actually constitute exact equations of motion for g(k;t,t') and U(k;t,t').

We may infer from this the consistency of the direct-interaction appi*oxi-

mation in the respects mentioned previously.

The direct-interaction approximation appesirs to be the simplest

dynamical approximation which embodies the consistency properties in

question - that is, realizability of U(k;t,t') as a covsiriance scalar,

proper asymptotic behavior, and detailed energy conservation. Higher

approximations with these properties can be constructed also. The next such

approximation involves obtaining an approximate expression for foxurth-order

moments in terms of third-order mcanents, second-order moments, and higher

response functions and using it to close off the set of moment equations.

Like the direct-interaction approximation, this leads to integro-differential

If
- '

—
The conservation properties of the direct-interaction approximation may be

verified independently from (^.5) by \ising the identities (^.'«-).
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equations vhich are exact for a modified system. Now, however, the modified

system bears a closer resemblance to the actual system in that the proper

sign relations between different elementary interactions are taken approxi-

mately into account. There appear to be a well-defined sequence of success-

ively higher approximations which exactly describe model systems embodying

more and more accurately the dynamical structure of the actual system. The

higher approximations provide, in principle, a means of estimating the errors

associated with the direct-interaction approximation, but they promise severe

mathematical difficulties.

The fact that the direct-interaction approximation gives an exact

description of our model system sviggests the nature of the inaccuracies it

generates. As we have noted before, the model system preserves the strengths

of all the elenentary interactions of mode triads but loses completely the

correlation in sign between the coefficients of different elementary inter-

actions. It seems plausible that the mean energy transfer among the modes

should depend principally on the relative excitation of the various modes

and on the strengths of the interactions which link them. Thus we might expect

that it should be fairly well described by the direct-interaction approximation.

This surmise is supported by the reasonableness of the dynamical interpretation

we have been able to give for the transfer function (^.5)- Some further support

is given by the application of the theory discussed in the next Section.

Now, however, let us turn to the question of the detailed structure

of the turbxilence in coordinate space. The evolution of the flow can be

partially described as due to the convection, stretching, and twisting of the

velocity field by itself. These phenonena seem fairly simple intuitively,

but they involve, in essential fashion, the algebraic summation of contribu-

tions from all the elementary interactions linking the Foiirier components of

any given 'eddy structure'. In the model system, consequently, they become

scrambled beyond recognition with regard to appearance in coordinate space.

This suggests that the direct-interact!on approximation shoiild give increas-

ingly poor results when extended to the evaluation of successively higher-order

moments, sensitive to the precise spatial form of the velocity structures.
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6. APPLICATION TO THE INERTIAL RANGE

Some characteristics and limitations of the direct-interaction

approximation may be illustrated by applying it to the inertial range and

interpreting the results in terms of the model system introduced in the

last section.

Let the rms turbulent velocity in any direction be v^, and let

the rate of dissipation by viscosity per unit mass be € . Then, a wave-

nijmber cheiracterizing the energy- containing range of the tiirbulence is

given by

and a Reynolds number for this range by

^0 = Vo'^/^ (^-1^)

Iflien R- ' » 1, the integro-dlfferential equations of the

direct-interaction approximation simplify greatly for high wavenumbers.

Using them, it is found"^ that the inertial range and the range of prin-

cipal energy dissipation involve wavenumbers k satisfying the inequalities

kQ « k « R^k^ . (6.2)

Also, it is found that the transfer of energy is local in waveniimber space,

there being no appreciable direct transfer from the energy- containing

range to the "waveniflnbers satisfying (6.2).

The characteristic times for modes satisfying (6.2) are very

short compared to the decay time of the turbulence. This has the con-

sequence that g(k;t,t') and r(k;t,t') may be considered explicit functions

of only the difference time t - t'. The solution of the system (2.8), (^.2),

and (^.7) in this range then gives the resiilt

J^[2vQk(t - f)]

g(k;t,f) =r(k;t,t') = (6.3)
VQk(t - f)
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(it nmst be renemibered here that g(kjt,t') is defined only for t > t*.)

ThTis the characteristic time for mode k is the order of l/v^k, the time

associated vith the convection of a structure of this wavenimiber by an

rms velocity component. The transfer function in the range (6.2) reduces

to the form

T(k) = k [k a(k,p,q)E(p)-p^(k,p,q)E(k)]E(q)5'(k,p,q) , (6.4)
JJ^ nn

vhere

^(k,p,q) =
I

ds
v-ks v^s V qs

(rt/2)
1/2

V
2 ^ _2vl/2

,(k2 + p2 + q2)
(6.5)

We have siippressed the time-dependence of T and E in (6.4), since this

variation is slow conpared to the characteristic times of the modes in-

volved.

The qviantity ^(k,p,q) has the dimensions of a time. In view of

our previous discussion of the direct-interaction approximation^ we may

interpret <9(k,p,q) as the effective time diiring which the direct elemen-

tary interaction of modes k, p, and q can build up phase relations before

they are wiped out by the relaxation due to the overall nonlinear inter-

action, to put it very crudely. In the present case the relaxation

evidently is dominated by the action of the energy-containing range, as

demonstrated by the factor v^ in "(6.5). Thus, in the direct-interaction

ajxproximation the energy- containing region exerts an Influence on the rate

at which energy is transferred within the high-wavenumber region, even

though there is negligible direct transfer from the energy-containing

region to the high wavenimibers

.
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The inert!al-range spectrum law In the direct-interaction

approximation is easily found from the form of (6.4) and the fact that

the energy-transfer turns out to be local in wavenumber space. It is

apparent from (6.4) that the rate at which energy is transferred by each

elementary interaction involves the spectrum function bilinearly and the

velocity v. inversely. Since the transfer is local, the rate £ at which

energy -passes from below to above the wavenimber k can depend only on

the spectrum function in the neighborhood of k. Thus,

€ ~ ^[E(k)]2 , (6.6)

where the factor k makes the dimensions of both sides the same, and may

be deduced from (6.4). Inverting (6.6) we have the spectrum law

E(k) = const. (evQ)^/V^/^. (6.7)

This law is corroborated, and the constant of proportionality is obtained,

by a detailed treatment of (6.4).-'

k
It is well-known that according to the Kolmogorov theory the

spectrum in the inertail range is given not by (6.7) but by

E(k)-<= €2/3i5.-5/5, (6.8)

The origin of the discrepancy lies in the different roles played by the

energy- containing modes in the two theories. Under the direct-interaction

ai>proximation, the action of these modes on the high wavenumbers may be

described as follows. They induce a rapid (characteristic time I/vq^)

exchange of energy among very many modes^ in the neighborhood of a given

high k whose wave vectors differ by the order of k . Although these high-

lying modes have nearly the same wave vectors, their phases are effectively

almost randomly related (cf . Section ^) , and so the energy-mixing results

in a relaxing of the phase relations, essential for mean energy-transfer,

among individual triads consisting of one of the modes in the neighborhood

and modes p,q In other neighborhoods.

5 II
If it is assumed that € is proportional to v , and otherwise is determined

by 1oc8lL properties, then (6.6) follows from dimensional considerations alone.
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In the Kolmogorov theory, on the other hand, the energy- containing

modes have only a triviad. convective effect on high k modes and do not direct-

ly influence the dynamics in the high k range. On this basis, the energy-

containing range should not contribute to the relaxation of energy-transfer-

ring phase relations among modes k, p, and q. In fact, if in the expression

(6.5) for <9(k,p,q) ve replace v_ by, say, [kE(k)] '
, which may be consi-

dered the rms velocity associated with wavenumbers the order of k only, it

may be seen that the modified equation (6.4) thereby obtained leads to the

Kolmogorov law (6.8).

It does not seem very easy to decide which of the two inertial

range laws is asymptotically correct for infinite R , or, for that matter,

whether either of them is. The argument basic to the Kolmogorov theory -

that the energy-range has only a trivial convective effect on high wavenum-

bers - is open to doubt. This is because high Reynolds ntmiber t\arbulence

tends to display sharp shear fronts which contribute significantly to the

high k spectrum, and across which the jump in velocity can be an appreciable

fraction of v.. It is not clear how to separate the low and high wavenumbers

in such regions in a physically satisfying fsishion. On the other hand, if

the Kolmogorov theory is correct, it is not a surprise that the direct-

interaction approximation fails to reproduce it. The convection, with only

small distortion, of a small-scale velocity structvire by a large-scale

structxire is not a very elementary process in k si>ace. It involves in

essentieJ. fashion the fact that the coefficients of many elementary inter-

actions linking low waventmibers with pairs of high wavenvmibers are nearly

the same. Consequently, as indicated by the discussion in Section 5^ it is

badly reproduced in the model system which the direct-interaction approxima-

tion describes.

The really surprising fact, -perhaps, is that the very different

dynamical pictures called for by the Kolmogorov theory and the direct-inter-

action approximation lead to asymptotic laws which are nearly the same.

This appears to support the stirmise made in the last Section that so far as

energy equilibrium is concerned it does not make much difference how the

elementary interactions axe phased. One might expect, moreover, that the

accuracy of the direct-interaction approximation very likely iaiproves at wave-

nvmibers below the Inertial range, where convection-without-appreciable-

distortion clearly does not occur in any event.
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