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Abstract

A "branch and bound" algorithm is presented for solving the travel-

ing salesman problem. The set of all tours (feasible solutions) is

broken up into increasingly small subsets by a procedure called branch-

ing. For each subset a lower bound on the length of the tours therein

is calculated. Eventually, a subset is found which contains a single

tour whose length is less than or equal to some lower bound for every

tour. The motivation of the branching and the calculation of the lower

bounds are based on ideas frequently used in solving assignment problems.

Computationally, the algorithm extends the size of problem which

can reasonably be solved (i.e. the size of problem for which a guaranteed

optimal tour can be found without using methods special to the parti-

cular problem). The algorithm has been programmed for an IBM 7090.

Problems constructed by using 3 digit random numbers as distances be-

tween cities have required average computing times as follows: 10 cities,

.012 minutes; 20 cities, .084 minutes; 30 cities, .98 minutes; 40 cities,

8.37 minutes. Because the time is growing roughly exponentially, the

solution of problems much larger appears impractical under the current

algorithm. Symmetric distance matrices (e.g. from a map) take longer

than the asymmetric random distance matrices. For example, Held and

Karp's 25 city problem took % 7 minutes. For both types of problems

the computing times display considerable variance.
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Introduction

The traveling salesman problem is easy to state: A salesman,

starting in one city, wishes to visit each of n-1 other cities and

return to the start. In what order should he visit the cities to

minimize the total distance traveled? For "distance" we can substitute

time, cost, or other measure of effectiveness as desired. Distance or

costs between all city pairs are presumed known.

The problem has become famous because it combines ease of statemenx

with difficulty of solution. The difficulty is entirely computational,

since a solution obviously exists. There are (n-1)! possible tours, one

or more of which must give minimum cost. (The minimum cost could con-

ceivably be infinite - it is conventional to assign an infinite cost to

travel between city pairs which have no direct connection.)

The traveling salesman problem recently achieved national prominence

when a soap company used a 33 city example as the basis of a promotional

contest. Quite a few people found the best tour. A number of people

(mostly from universities) wrote the company that the problem was

impossible - an interesting misinterpretation of the state of the art.

For the early history of the problem, see Flood *•
. In recent

years a number of methods for solving the problem have been put forward.

Some suffer from computational inefficiency, others lack guarantees that

the solution will be optimal, and still others require intuitive judg-

ments that would be hard to program on a computer. For a detailed

discussion, see Gonzalez'- -'.
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The approach which, to date, has been pursued furthest computa-

T3ltionally is that of dynamic programming. Held and Karp and

[2]'
Gonzalez have independently applied the method and have solved

various test problems on computers. Gonzalez programmed an IBM 1620

to handle problems up to 10 cities. In his work the time to solve a

problem grew somewhat faster than exponentially as the number of cities

increased. A 5 city problem took 10 seconds, a 10 city problem took 8

minutes, and the addition of one more city multiplied the time by a

factor, which, by 10 cities, had grown to 3. Storage requirements ex-

panded with similar rapidity.

Held and Karp'- - have solved problems up to 13 cities by dynamic

programming using an IBM 7090. A 13 city problem required 17 seconds.

But such is the power of an exponential that, if their computation

grows at the same rate as that of Gonzalez, a 20 city problem would

require about 10 hours. Storage requirements, however, may become

prohibitive before then. For larger problems than 13 cities, Held and

Karp develop an approximation method which seems to work well but does

not guarantee an optimal tour. Our concern here will be with methods

that must eventually yield an optimal tour.

We have found two papers in which the problem has been approached

by methods similar to our "branch and bound" algorithm. Rossman, Twery

and Stone'- -1 in an unpublished paper apply ideas which they have called

combinatorial programming'- -'. To illustrate their method they present
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a 13 city problem. It was solved in 8 man-days. We have solved their

problem by hand in about 3 1/2 hours. Eastman'- 5
-' in an unpublished

doctoral thesis and laboratory report presents a method of solution

and several variations on it. His work and ours contain strong

similarities. However, to use our terminology, his ways of choosing

branches and of calculating bounds are different from ours. He basical-

ly solves a sequence of assignment problems which give his bounds. We

have a simpler method, and for branching we use a device which has quite

a different motivation. The biggest problem Eastman solves is 10 cities

and he gives no computation times, so that effective comparisons are

difficult to make.

To summarize, the largest problem which we know about that has been

solved by a general method which guarantees optimality and which can

reasonably be programmed for a computer is 13 cities. Our method

appreciably increases this number. However, the time required increases

at least exponentially with the number of cities and eventually, of

course, becomes prohibitive. Detailed results are given below.

The Algorithm

We shall simultaneously present the algorithm and work out an

example. Heuristic arguments accompany each step. In the next section

a more detailed mathematical justification will be given.
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Consider the matrix of Figure 1. The entry at position (i,j),

say c(i,j), represents the cost (distance) for going from city i to

city j. A tour is a set of city pairs, e.g.,

t = [(1,3) (3,2) (2,5) (5,6) (6,4) (4,1)]

which spell out a trip that goes to each city once and only once. Let

z be the cost of a. tour. From Figure 1 it may be seen that the above

tour would cost:

z = 43 + 13 t 30 + 5 + 9 + 21 = 121.

If a constant is subtracted from each element of the first row of

Figure 1, that constant is subtracted from the cost of every tour.

This is because every tour must include one and only one element from

the first row. The relative costs of all tours, however, are unchanged

and so the tour which would be optimal is unchanged. The same argument

can be applied to the columns.

The process of subtracting the smallest element of a row from each

element of a row will be called reducing the row. Thus the first row

in Figure 1 can be reduced by 16. Note that, in terms of the unreduced

matrix, every trip out of city 1 (and therefore every tour) will have a

cost of at least 16. Thus, the amount of the reduction constitutes a

lower bound on the length of all tours in the original matrix.

Step 1: Reduce the rows and columns of the coit matrix. Save the

sum of the reductions as a lower bound on the cost of a tour.
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The results of reducing Figure 1 are shown in Figure 2. The total

reduction is 48 and so z .>. 48 for all tours.

Next we split the set of all tours into two disjoint subsets.

This is conveniently indicated by drawing a tree as in Figure 3. The

node (branching point) containing "all tours" is self-explanatory. The

node containing 1,4 represents all tours which include the city pair

(1,4). The node containing 1,4 represents all tours which do not. From

the 1,4 node we might later want to branch again, say, on the basis of

(2,1). In Figure 3 the node containing 2,1 represents all tours which

include (1,4) but not (2,1) whereas 2,1 represents all tours which

include both (1,4) and (2,1). In general, by tracing back from a node

to the start we can pick up which city pairs are specified to be in

and which out of the tours represented by the node. If the branching

process is carried far enough, some node will eventually represent a

single tour. Notice that at any stage of the process , the union of

the sets represented by the terminal nodes is the set of all tours.

Returning to the question of lower bounds, we have seen that 48 is

a lower bound on all tours. In Figure 2 the starting node is accordingly

marked with 48. Consider the first row of Figure 2. Suppose that city

pair (1,4) is not in a tour. Then since city 1 must be assigned to some

city, the tour must incur a cost of at least 10 (the second smallest

element in row 1). This is on top of the 48 already reduced out of the

matrix. Similarly, since some city must be assigned to city 4, the tour
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must further incur the cost of the second smallest element in column 4.

The element happens to be zero in this case and so the total lower bound

is still 58. The node has been so marked in Figure 3.

Thinking ahead, suppose we eventually discover a tour with z = 56.

Then, in a search for the optimal tour, it would be unnecessary to examine

any of the tours in the node 1,4 since they all have z ^-58. Not knowing

in advance what z's will be found, we shall select the element on which

to branch so as to increase most of this lower bound. Let 0(k,.(') be the

jump in lower bound if (k,^) is chosen for branching. As indicated in

the example:

Q(k,,f) = smallest element in row k, omitting the (k,^) element

+ smallest element in column i, omitting the (k,*') element

Step 2: Given the node, say X, from which to branch next, and

given the cost matrix associated with X, find the city pair (k,l) which

maximizes and extend the tree from X to a node k,.{. Add Q(k.X) to the

lower bound of X to set the lower bound of the new node.

Inspection of the iriatxix will show that Q(k,{) = unless c(k,-<) =

so that the search for max is confined to the zeros of the matrix. In

Figure 2 the values are shown in small circles. The largest occurs

for (1,4), as already chosen (clairvoyantly) to illustrate branching.

At this point we slip in a step needed, later to detect when the

end of a tour is near.

Step 3: If the number of city pairs committed to the tours of X is

n-2, go to Step 6. Otherwise continue.
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Returning to the example, we next seek a lower bound for the 1,4

node. Since all tours here contain (1,4) row 1 and column 4 are no

longer needed and may be crossed out. Next observe that no tour in the

set represented by this node can contain the city pair (4,1). This is

because (1,4) (4,1) constitute.; a two city subtour, and it is impossible

for a tour to contain a subtour. Therefore, without loss of tours, write

1,4 and 4,1 in the node and in the cost matrix set c(4,l) =c<i . This

will prevent (4,1) from being chosen as part of a possible tour. After

the changes in the matrix, further reduction of rows or columns may be

possible. In the case at hand, row 2 can be reduced by one. See Figure

4. Adding this to the previous lower bound gives 49, which has been

marked on the node in Figure 5.

Step 4; Finish the branching based on (k,,^) by extending the tree

from X to a node k,^m,p. Here (m,p) is the city pair which would join

the ends of the longest connected path involving (k,Q in the set of

committed city pairs of the new node. Delete row k and column \ in the

cost matrix and set c(m,p) = c/j . Reduce rows and columns if possible

and add the amount of the reduction to the lower bound of X to set the

lower bound for the new node.

A further example of finding (m,p) is illustrated by the node

2,1; 472. All tours at this node contain (2,1) and (1,4). The addition

of (4,2) would create a 3 city subtour, which we wish to prevent and do
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prevent by specifying 4,2 for the node. One could also add l'
f
2 but row 1

has already been crossed out and so there is no advantage. The only

worthwhile candidate for (m,p) is always the element that completes the

longest subtpur involving (k t>?).

We now repeat the basic branching procedure of Steps 2 and +;

extending the tree, and working up the lower bounds as we go.

Step 5: If no node has been found which contains only a single

tour, find the terminal node with the smallest lower bound and return to

Step 2 for branching. Otherwise continue.

A comment is required about branching to the right versus branching

to the left. Branching on the k,^; m,p node (to the right in Figure 5)

is the usual operation. It involves crossing out rows and columns and

other manipulations which are conveniently done on the same physical

representation of the matrix, whether stored on paper or in a computer.

When one returns to extend a k % ji node (moving to the left) it is usually

advantagous to reconstruct an appropriate matrix from the original cost

matrix, rather than arranging to save cost matrices for each node as it

is laid out. We, therefore, give

Step 2a: If a cost matrix is needed for node X, start with the

original cost matrix and

(1) Find the city pairs committed to be in the tours of X

and add their cost elements together to form part of the lower bound

for X.
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(2) For every (i,j) which is one of these city pairs, cross

out the i ' row and j column of the matrix. Add infinities at

prohibited city pairs.

(3) Reduce the remaining matrix and add the amount of the

reductions to that found in (1) to give a lower bound for X.

CO Perform the instructions given in Step 2.

The lower bound and the reduced matrix are not necessarily unique,

consequently, when a new bound is calculated, the old is discarded. How-

ever, bounds calculated in the two ways will usually be the same.

As Steps 1-5 are performed on the example, the tree of Figure 5 is

developed, up to the final node: 4,3; 6,2,

Here, Step 3 causes a jump out of the loop. Step 2 will have told

us that the current branching is based on (4,3). This, plus the city

pairs found by tracing back the tree, show that n-1 city pairs are

already committed to the upcoming node. But the n-1 determine what the

last must be (here (6,2)), and we have found a single tour node.

Examination of the final 2X2 cost matrix will show that no reduction is

possible and that the cost of the remaining pairs relative to this matrix

is zero. Thus the tour has z = 63.

Furthermore, since every possible tour is contained in one or

another of the terminal nodes and each of the other nodes has a lower bound

greater then 63, we have found the optimal tour.

Step 6: If entry to this step is from Step 3, the next node is

k»f» m »P where (m,p) is the only city pair left after crossing out row k
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Figure 5. Final Tree.





-10-

and column X. The node contains a single tour. Calculate its cost.

Now, for any entry to the step, let t
fl

denote the tour with the smallest

cost, say z , among single tours found so far. If Zq is less than or

equal to the lower bound of every terminal node on the tree, t
n

is optimal.

Otherwise choose the multiple tour terminal node with the smallest lower

bound and return to Step 2 for branching.

At this point, let Us stand back and review the general motivation

of the algorithm. It proceeds by branching, crossing out a row and

column, blocking a subtour, reducing the cost matrix to set a lower

bound and then repeating. Although it is fairly clear that the optimal

solution will eventually be found, why should these particular steps be

expected to be efficient? First of all, the reduction procedure is an

efficient way of building up lower bounds and also of evoking likely city

pairs to put into the tour. Branching is done so as to maximize the

lower bound on the k, k node without worrying about the k,f node. The

reasoning here is that the k$ node represents a smaller problem, one

with the kt row and J^" column crossed out. By putting the emphasis on

a large lower bound for the larger problem, we rule out non-optimal

tours faster.

Insight into the operation of the algorithm is gained by observing

that the crossing out of a row and column and the blocking of the

corresponding subtour creates a new traveling salesman problem having

one fewer city. Using the notation of step 4, we can think of city m

and city p as coalesced into a single city, say, m*. Setting c(m,p) = °°
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ls the same as setting cCm 1 ,!^) = «^. The blocking of subtours is a way of

introducing the tour restrictions into what is essentially an assignment

problem and is accomplished rather successfully by the algorithm.

Finally, unlike most mathematical programming algorithms, the one

here has an extensive memory. It is not required that a trial solution

at any stage be converted into a new and better trial solution at the

next stage. A trial branch can be dropped for a moment while another

branch is investigated. For this reason there is considerable room for

experiment in how the next branch is chosen. On the other hand the same

property leads to the ultimate demise of the computation - for n

sufficiently large there are just too many branches to investigate and

a small increase in n is likely to lead to a large number of new nodes

that require investigation.

Mathematical Support

We shall establish the convergence of the algorithm, the optimality

of the final result, the justification of the branching procedure, and

the validity of the lower bound calculations. First a formal problem

statement is presented.

Problem Statement

Index the cities of the problem by i=l, ..., n. The couple (i,j)

is an ordered city pair in which i is an origin and j is a destination.

A tour , t, is a set of n city pairs,

t = CUi.Ji) U2.J2) ••• (in.in^

satisfying the constraints:
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CI. Each integer from 1 to n must appear once and only once

as an origin and once and only once as a destination.

C2. It must be possible to arrange the city pairs into the form

t = C(ilt i 2 ) (i
2
,i

3 ) ••• (in-l.i-n) (Wl^
Thus the elements of t are arcs in an elementary circuit of length n.

Circuits of length less than n are subtours. Note that t cannot be a

tour and also contain a subtour; for there is no way to connect the

necessary cities to the subtour and still meet the constraits.

Let c(i.j) = the cost of going from i to j.

C = the n x n of the c(i,j)

z(t)= ^>_c(i,j)= the cost of tour t

(i,j)6t
"

T = the set of all tours

Formally, then, the traveling salesman problem is to choose t<?T to

minimize z(t).

Remarks

;

Traveling salesman problems are frequently symmetric,

i.e., c(i,j) = Lc(j,i), and a problem involving straight line distances

on the Euclidian plane would require various geometric conditions to be

satisfied. The algorithm here does not require either of these

properties. However, if the problem is symmetric, a modification of the

method makes it possible to take some advantage from the fact.

If, for some reason, it is not possible to go from i to j , we set

c(i,j) = oo . Thus an infinitely expensive tour is an infeasible one.

Observe that if constraint C2 is dropped, t becomes an assignment

and the problem statement becomes that of the assignment problem.
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Branch and Bound

The idea that we are calling "branch and bound" is more general

than the traveling salesman algorithm. It may be summarized as follows:

A minimal solution for a problem can be found by taking the set of

all feasible solutions and breaking it up into disjoint subsets. For

each subset a lower bound is found on the value (of the objective function)

for the minimal solution in that subset. The subset with the smallest

lower bound is broken up further and lower bounds are again found for the

new subsets. The process continues this way and is conveniently

visualized as a branching process, or tree. The branching points (nodes)

represent the subsets which have been broken up and end points (terminal

nodes) represent the current collection of subsets. The process stops

when a subset is found which contains a single solution whose value is

less than or equal to the lower bounds for all the terminal nodes. (The

lower bound used for a single solution is assumed to be the value of the

solution itself. ) Since the terminal nodes collected together always

contain all solutions, a minimal solution has been identified.

The process is sure to converge if, for example, the number of

solutions is finite and if the partitioning procedure will separate out

every solution in a finite number of steps. At worst, the procedure

will simply become an enumeration of solutions. The algorithm's

efficiency, or lack of it, will rest on the devices Used to break up the

subsets and find the lower bounds.

In the traveling salesman problem, the number of solutions is finite
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and, as will be seen in the next section, the branching procedure would

eventually enumerate all solutions if not stopped by finding the optimal

solution sooner. Thus, convergence will be assured and, by the arguments

above, the final result will be optimal.

Justification of the Branching Procedure

Several proporties of the branching procedure are to be verfied:

(1) The process leads to single tour subsets; (2) the process converges

in a finite number of steps, and (3) at any stage the union of the sets

of the terminal nodes is T.

As a result of Steps 2 and 4, each branching splits a subset of

tours, X, into two disjoint subsets, say X(l) and X(2), on the basis of

some city pair (k
tJl):

X(l) = [t£X | <k,J)<^tJ

X(20 = [t€X
j
(k,/)€t, (m.p^tj

except in the case covered by Step 3, in which situation we claim that

X(2) = \t ex | (k,,P)£t, (m,p)<£t/. In any case, by tracing back up

the tree to T from a node X, we can always develop two sets of city pairs:

a[X] = CCi-x,
j j_) (i2*J2)*"] = a set 0:f city pairs

committed to appear in t€X

b[X] = [(r^,s^) (r2,s
2
)...] = a set of city pairs

prohibited from appearing in t6X.

The properties to be established follow easily from the following:

Theorem 1: Under the algorithm, the set a[X] never contains a sub-

tour. Furthermore,, the choice of (m,p) never prohibits a tour in X(2)
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that would otherwise be there. If Step 6 is entered from Step 3, X(2)

contains the single tour t = a[Xj (Jl^k,^) (m,p)j .

In Step 4, a[X(2)] = a[X] U[(k,l )] , Has the addition of (k,i)

produced any new paths in a[X(2)] which could be made into circuits

(subtours) at the next branching? Yes, (k,i) will either extend a path

of a[X], join two paths of a[X], or start a new, single arc path. In any

of these cases the next branching might select a city pair which would

close the extended or new path. But whichever is the case, the circuit

is then blocked in advance by b[X(2)] = b[X] U{(m
t p)j . Only the

potential circuits newly created by (k,<) need be considered, for others

have been blocked by the same procedure applied at an earlier stage.

Circuits which close by joining into the middle of a path will never be

introduced because the row and column for such an entry point has been

crossed out of the matrix. Therefore, a[X] never contains a subtour.

Furthermore, under the algorithm no tours are lost by prohibiting (m,p)

in tours of X(2), since, starting from (m,p) we can form no tour which

includes all of the rest of a[X(2)]. A potential exception is prevented

by Step 3. If Step 6 is entered from Step\3, aCXJL^k,^/ contains (n-1)

elements and the ntn is uniquely determined. Since subtours have been

prohibited, the result is a tour, and obviously a single tour. However,

the definition of (m,p) includes the possibility that it completes a

tour, and so the n element is (m,p). This finishes the theorem.

As we follow down the tree, the sets a or b or both are augmented at

each branching. Eventually, if not otherwise stopped, we always reach
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(in a finite number of stages) a node which has n elements in a or else

a node which has so many elements in b as to prohibit all tours. This

last will produce an infinite lower bound, thereby shifting the branching

elsewhere. Thus the process will converge, and, as indicated by the

theorem, will produce single tour subsets.

Since branching loses no tours: X(l)Ux(2) = X for every branch

point. The union of the terminal nodes is T at every stage.

Validity of the Lower Bounds

The calculation of the lower bounds is built around the concept of

reduction and the following well known result.

Theorem 2: Let C and C be n x n cost matrices and z(t) and z'(t)

be the cost of a tour t under C and C respectively. If C is formed by

subtracting a constant 0, from each element in a row (column) of C then

(a) z(t) = + z'(t) for all t<ET

(b) The optimal tours under C are the same as under C.

Part (a) is true because a tour must include some element (but only

one) from each row (or column). Part (b) follows from (a) since relative

z's are unchanged.

A reduced matrix will be defined as a matrix of non-negative elements

having at least one zero in each row and column. Any matrix can be

reduced by subtracting from each row its row minimum and then from each

column its column minimum, but sometimes more complicated procedures are

desirable. The sum of the constants used in the subtractions will be

called the amount of reduction of the matrix. Neither the reduced matrix
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nor the amount of reduction is necessarily unique but may depend on the

way it is performed.

Corollary 1: If C is a matrix, C a reduced matrix obtained from C,

and 8 the amount of reduction, then (a) and (b) of Theorem Ol hold.

Furthermore z(t)^-fl for all te.T.

Results (a) and (b) follow immediately from Theorem 2. That © is a

lower bound follows from (a) and the non-negativity of a reduced matrix.

The proofs of Theorem 2 and corollary 1 are unchanged if t is taken

to be an assignment and T the set of all assignments .

Let C[X] = a reduced matrix which lacks row i and column j

for each (i,j)£:a[X]

Cw(i,j) = the i,j element of C[X]

t-a = the set of city pairs which are in t€X but not in a[X]

z(t-a) = the cost of the assignment t-a under C[X]

w[X] = a lower bound on z(t), t<=X.

We shall show that the algorithm sets up and preserves a "node

condition", whereby w[X] and an associated C[X] are known and possess

properties which enable each lower bound to be determined from a

previous one.

Node Condition; Associated with any node X is a lower bound w[X]

and a reduced matrix C[X] such that for all t<grX

z(t) = w[X] + z(t-a)

Theorem 3; (a) Step 1 leaves the node condition satisfied for X=T.

(b) Step 2a leaves the node condition satisfied for X.
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(c) If X satisfies the node condition, then after

Step 2, X(l) satisfies it.

(d) If X satisfies the node condition, then after

Step t, X(2) satisfies it.

Part (a) is immediate from corollary 1.

For (b), let

kx] = 21 c(i,j)
(i,j)ea

C[X] = the matrix formed in Step 2a.

0[X] = the amount of the reduction in part (3) of Step 2a.

For t£X

z(t) = (([X] + 51 c(i,j)
(i.j)et-a

Let C" with elements c"(i,j) be the matrix formed by performing

(2) of Step 2a. Since the infinite elements occur only for (i,j)^t,

z(t) = $[X] + 2. c"(i,j)
(i,j)£t-a

Applying Corollary 1 to the assignments of C" and C[X]:

£c"(i,j) = OCX] + z(t-a)

whence

z(t) = (J[X] + ©[X] + z(t-a)

Step 2a sets w[X] = <)[X] + 0[X], This is a lower bound because z(t-a)

is non-negative. The node condition is satisfied.

For (c), Step 2 implies that C[X(1)] can be obtained by taking C[X],

replacing c„(k
t
-0 by infinity, and reducing.
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For t£X we know

z(t) = w[X] + z(t-a)

where z(t-a) refers to C[X], After insertion of the infinity, the cost

of (t-a) under the new matrix is still z(t-a) for t€X(l). Reduction

of the kth row and ^
th column yields C[X(D] and as the amount of

reduction, 0(k,4). Let z1(t-a) denote the cost of (t-a) under C[X(1)3.

By corollary 1

z(t-a) = 0(M) + z
x
(t-a)

Substituting above and setting w[X(l)] = w[X] + e(k,.P) as is done in

Step 2, we find that the node condition is satisfied.

For part (d),

z(t) = w[X] + z(t-a)

where z(t-a) is under C[X],

Furthermore, z(t-a) = c
x
(k,^) + ©

2
+ z(t-a[X(2)]) , where cx (k,J?) = u,

©2 is the reduction found in Step 4 and the last term is the cost of the

indicated assignment under the C[X(2)] developed in Step 4. Step •» sets

w[X(2)] * w[X] + ©2 and the node condition is satisfied.

The following simplifies the cost calculation in Step 6:

Theorem U: If a[X] contains n-2 elements and t is the resulting

single tour in X(2), then z(t) = w[Xj.

We know t = a[X]U£(k,^) (m,p)j and from the node condition for X:

z(t) = w[X] + z(t-a).

But z(t-a) = c
x
(k,-0 + c

x
(m,p)
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C[X] is a 2 x 2 matrix with a zero in each row and column. One of these

must be c
x
(k,.0. The element c

x
(m,p), which is diagonal to c

x
(k,^), must

also be zero because, if not, all elements but cY(m,p) must be zero. But

then 0(k,^) = and at the same time >0 for two other zeros. But this

contradicts the fact that (k,J?) produced max 0. Therefore

c
x
(k,J?) = c

x
(m,p) = and z(t) = w[X].

In computation, an infinity is represented by some large number. If

a[X] and b[X] are inconsistent, X is void, a large number will be

reduced out of the cost matrix, and the node will not be examined further

(unless possibly the problem has no finite solution, in which case all

nodes would eventually have large w[X]. The computer can be programmed

to detect this, if desired.) A large negative z(t) would indicate an

unbounded minimum.





Modifications

A variety of embellishments on the basic method can be proposed.

We record several that are incorporated in the computer program used

in later calculations.

Go To The Right

It is computationally advantageous to keep branching to the right

until it becomes obviously unwise. Specifically, the program always

branches from the node k,i;m,p unless the lower bound for the node

exceeds or equals the cost of a known tour. As a result a few extra

nodes may be examined, but usually there will be substantial reduction

in the number of time-consuming setups of Step 2a.

One consequance of the modification is that the calculation goes

directly to a tour at the beginning. Then, if the calculations are

stopped before optimality is proven, a good tour is available. Thtar^.

is also available J< a lower bound on the optimal tour. The bound may

be valuable in deciding whether the tour is sufficiently good for

some practical purpose.

Throw Away the Tree

A large problem may involve thousands of nodes and exceed the

capacity of high speed storage. A way to save storage at the expense

of time is as follows: Proceed by branching to the right (storing each

terminal node) until a single tour is found with some cost, say, Zq.

Normally, one would next find the terminal node with the smallest lower

bound and branch from there. Instead, work back through the terminal
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nodes, starting from the single tour, and discard nodes from storage

until one is found with a lower bound less than z
fi

. Then, branch

again to the right all the way to a single tour or until the lower

bound on some right hand node builds to Zq. (If the branch goes to

the end, a better tour may be found and z
Q

assigned a new, lower balue.)

Repeat the procedure: again work up the branch, discarding terminal

nodes with bounds equal or greater than Zg until the first one smaller

is found; again branch to the right, etc.

The effect of the procedure is that very few nodes need be kept in

storage - something on the order of a few n. These form an orderly

sequence stretching from the current operating node directly back to

the terminal node on the left-most branch out of "all tours".

As an illustration, consider the problem and tree of Figure 5.

The computation would proceed by laying out in storage the nodes 1,4;

2,1; 5,6 ; and 3,5. At the next step we find a tour with z = 63 and

the obviously useless node 4,3. The tour is stored separately from the

tree. Working up the branch, first 3,5 is discarded, then 5,6 and 2,1,

but 1,4 has a bound less than z . Therefore, branching begins again

from there. A node 6,3 is stored and then we find the node to the right

has a bound equal z
Q

and may be discarded. Working back up the tree

again, 6,3 is discarded and, since that was the only remaining terminal

node, we are finished.

The procedure saves storage but increases computation time. If the

first run to the right turns up a rather poor tour, i.e. large zQt the
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criterion for throwing away nodes is too stiff, we force ourselves to

branch out from many nodes whose lower bounds actually exceed the cost

of the optimal tour. Our original method would never do this for it

would never explore such nodes until it had finished exploring every

node with a smaller bound. In the process, the optimal tour would be

uncovered and so the nodes with larger bounds would never be examined.

Taking Advantage of Symmetry

If the travelling salesman problem is symmetric anfl t is any tour,

another tour with the same cost is obtained by traversing the circuit

in the reverse direction. Probably the most promising way to handle

this is to treat the city pair (i,j) as not being ordered. This leads

naturally to a new and somewhat more powerful couterpart to 0(k,X).

Although the basic ideas are not changed much, considerable reprogramming

is required. So far, we have not done it.

There is another way to take advantage of symmetry and this one is

easy to incorporate into our program. All reverse tours can be pro-

hibited by modifying X(l) whenever a[X] 0. Before modification

X(l) £t£*T
J

Ck,Jh^t, b[X]nt = o]

X(2) = (t€T I (k,J?)£t, (m,p)^t, b[X]nt = o]

All reverse tours of X(2) will have the property (.?,k)£t. They cannot

be in X(2) for this would imply a subtour. Such of tihem as were in X

must be in X(l) and we may easily eliminate them by modifying X(l)

(whenever a [X] = 0) to

X(l) =ft6X / (k,/)/t, <Z,k)j£t?





-24-

A Computational Aid

In both hand and machine computation Q(k,i) is easiest calculated

by first finding, for each row k and column H of the reduced matrix:

c<(k) = the second smallest cost in row k.

Q (Jl) = the second smallest cost in column JJ.

Then 9(kJ) = o<(k) + /? ($) for any (kj) which has c(k,J?) =0. In a

hand computation the <?<(k) can be written as an extra column to the

right of the matrix and the p (i) as an extra row at the bottom. By

working out a few problems, one easily learns that when the branching

is to the right there is no need to search the whole matrix to reset

otandfi. But that only certain rows and columns need be examined.





Calculations

Problems up to 10 cities can be solved easily by hand. Although

we have made no special study of the time required for hand computations,

our experience is that a 10 city problem can be solved in less than an hour.

The principal testing of the algorithm has been by machine on an

IBM 7090. Two types of problems have been studied: (1) asymmetric

distance matrices with elements consisting of uniformly distributed 3

digit random numbers and (2) various published problems and subproblems

constructed there from by deleting cities. Most of the published problems

have been made up from road atlases or maps and are symmetric.

The random distance matrices have the advantage of being statistically

well defined. Average computing times are displayed in Table I and

curve (a) of Figure 6. Problems up to 20 cities usually require only

a few seconds. The time grows exponentially, however, and by 40 cities

is beginning to be appreciable, averaging a little over 8 minutes. As

a rule of thumb, adding 10 cities to the problem multiplies the time by

a factor of 10. The standard deviation of the computing time also

increases with problem size as may be seen in Table I. Because the

distribution of times is skew, the simple standard deviation is a little

misleading, at least for the purpose of estimating the probability of

a long calculation. Consequently, a log normal distribution has been

fitted to the tail of the distribution. A use of the tabulated numbers

would be, for example, as follows: A two sigma deviation on the high

side in a 40 city problem would be a calculation which took (3.74) (4.55) =

64 minutes. In other words, the probability that a 40 city random
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TABLE I

Mean and Standard Deviation of T

for Random Distance Matrices

(T = time in minutes used to solve

Traveling Salesman Problem on IBM 7090)

Number
of

Cities
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distance problem will require 64 minutes or more is estimated to be .023.

Symmetric problems have usually taken considerably longer than

random distance problems of the same size. To obtain a variety of

problems of increasing size, we have taken published problems and

abstracted subproblems of increasing size. The first 10 cities were

taken, then the first 11 cities, etc., until the computing times become

excessive. Curves (b) and (c) of Figure 6 show the results for sub-?

[3]
problems pulled out of the 25 and 48 city problems of Held and Karp.

The 25 city problem itself took 4.7 minutes. We note that Held and

Karp's conjectured optimal solution is correct.

[8]
A few miscellaneous problems have also been solved. Croes'

20 city problem took .126 minutes. A 64 "city" knight's tour took

.178 minutes.
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